On Coefficient Bounds of Certain Subfamilies of Close-to-Convex Functions of Complex Order Defined by Sãlãgean Derivatives

Wasim Ul-Haq ${ }^{\text {a,b }}$, Shabana Manzar ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, College of Science in Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia.
${ }^{b}$ Department of Mathematics,Abdul Wali Khan University Mardan, KPK,Pakistan.

Abstract

Motivated from the recent work of Srivastava et al. (H.M. Srivastava, Qing-Hua Xu, Guang-Ping Wu , Coefficient estimates for certain subclasses of spiral-like functions of complex order, 23 (2010) 763-768), we aim to determine the coefficient estimates for functions in certain subclasses of close-to-convex and related functions of complex order, which are here defined by means of Sãlãgean derivative operator and Cauchy-Euler type non-homogeneous differential equation. Several interesting consequences of our results are also observed.

1. Introduction

Let \mathcal{A} denote the class of function $f(z)$:

$$
\begin{equation*}
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \tag{1}
\end{equation*}
$$

which are analytic in the unit disk $E=\{z:|z|<1\}$. Let f and g be analytic in E, we say that f is subordinate to g, written as $f(z)<g(z)$ if there exists a Schwarz function w, which is analytic in E with $w(0)=0$ and $|w(z)|<1(z \in E)$, such that $f(z)=g(w(z))$. In particular, when g is univalent, then the above subordination is equivalent to $f(0)=g(0)$ and $f(E) \subseteq g(E)$, see [7]. Also let $S^{*}(\gamma), C(\gamma), K(\gamma)$ and $Q(\gamma)$ be the subclasses of \mathcal{A} consisting of all functions which are starlike, convex, close-to-convex and quasi convex of complex order $\gamma(\gamma \neq 0)$ respectively, for details see [1,9-12]. We note that for $0<\gamma \leq 1$, these classes coincide with the well known classes of starlike, convex, close-to-convex and quasi convex of order $1-\gamma$.

Sãlãgean [14] introduced the operator $D^{n}\left(n \in N_{0}\right)$ which is also called Sãlãgean derivative operator and is defined as:

$$
\begin{aligned}
& D^{0} f(z)=f(z) \text { and } D^{1} f(z)=z f(z) \\
& \text { and, in general, } \\
& D^{n} f(z)=D\left(D^{n-1} f(z)\right)(n \in N)
\end{aligned}
$$

[^0]or, equivalently,
$$
D^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}\left(n \in N_{0}: f \in \mathcal{A}\right)
$$

Let $h: E \longrightarrow \mathbb{C}$ be a convex function such that $h(0)=1$ and $\mathbb{R e} h(z)>0(z \in E)$. In a recent work Srivastava et al. [22] study the following class of starlike functions,

$$
S_{h}^{*}(n, \lambda, \gamma)=\left\{f: f \in \mathcal{A} \text { and } 1+\frac{1}{\gamma}\left[\frac{z\left[(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)\right]}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}-1\right] \in h(E)(z \in E)\right\}
$$

where $0 \leq \lambda \leq 1 ; n \in N_{0} ; \gamma \in \mathbb{C} \backslash\{0\}$. Note that with $h(z)=\frac{1+z}{1-z}$

$$
S_{h}^{*}(0,0, \gamma)=S^{*}(\gamma), \quad S_{h}^{*}(0,1, \gamma)=C(\gamma)
$$

Here we define the following.

Definition 1.

Let $f \in \mathcal{A}$. Then $f \in \mathcal{K} Q_{\langle }(n, \lambda, \gamma)$ if there exists a function $g \in S_{h}^{*}(n, \lambda, 1)$ such that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\frac{z\left[(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)\right]^{\prime}}{(1-\lambda) D^{n} g(z)+\lambda D^{n+1} g(z)}-1\right] \in h(E)(z \in E) \tag{2}
\end{equation*}
$$

where $\left(0 \leq \lambda \leq 1 ; n \in N_{0} ; \gamma \in \mathbb{C} \backslash\{0\}\right)$.
We note that with $h(z)=\frac{1+z}{1-z}$,

$$
\mathcal{K} Q_{২}(0,1, \gamma)=K(\gamma), \mathcal{K} Q_{<}(0,1, \gamma)=Q(\gamma)
$$

Motivated from the recent work of Srivastava et al. [22] the main purpose of our investigation is to derive coefficient estimates of a subfamily $T_{h}(n, \lambda, \gamma ; \mu)$ of \mathcal{A}, which consists of functions $f(z)$ in \mathcal{A} satisfying the following Cauchy Euler type non homogenous differential equation

$$
\begin{equation*}
z^{2} \frac{d^{2} w}{d z^{2}}+2(1+\mu) z \frac{d w}{d z}+\mu(1+\mu) w=(1+\mu)(2+\mu) h(z) \tag{3}
\end{equation*}
$$

where $w=f(z), h(z) \in \mathcal{K} Q_{(}(n, \lambda, \gamma), \mu \in \mathbb{R}-(-\infty,-1]$, for related work see [2-6, 8, 15-27] and the references therein.

2. Preliminary Results

We need the following lemmas, which are essential in our forthcoming results.
Lemma 1 [22]. If the function

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \in S_{h}^{*}(n, \lambda, \gamma)
$$

then

$$
\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2}\left(k+\left|h^{\prime}(0)\right||\gamma|\right)}{(j-1)!j^{n}(1-\lambda+j \lambda)}\left(j \in N_{0}=: N \backslash\{1\}=\{2,3,4 \ldots \ldots\}\right) .
$$

Lemma 2 [13]. Let the function g given by

$$
g(z)=\sum_{k=1}^{\infty} b_{k} z^{k}
$$

be convex in E. Also let the function f given by

$$
f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}
$$

be analytic in E. If $f(z)<g(z)(z \in E)$, then

$$
\left|a_{k}\right| \leq\left|g_{1}\right|
$$

3. Coefficient Estimates for Functions in the Class $\mathcal{K} Q_{\curlywedge}(n, \lambda, \gamma)$

Theorem 1.

Let the function f given by (1). If $f \in \mathcal{K} Q_{\langle }(n, \lambda, \gamma)$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2}\left(k+\left|h^{\prime}(0)\right|\right)}{j^{n}(1+(j-1) \lambda) j!}+\frac{|\gamma|\left|h^{\prime}(0)\right|}{j^{n+1}(1+(j-1) \lambda)} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2}\left(k+h^{\prime}(0)\right)}{(j-k-1)!} . \tag{4}
\end{equation*}
$$

This result is sharp.

Proof.

Suppose that the functions $F(z)$ and $G(z)$ be defined in terms of the Sããgean derivative operator D^{n}, by

$$
\begin{align*}
F(z) & =(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z) \\
& =z+\sum_{j=2}^{\infty} A_{j} z^{j}, \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
G(z) & =(1-\lambda) D^{n} g(z)+\lambda D^{n} g(z) \tag{6}\\
& =z+\sum_{j=2}^{\infty} B_{j} z^{j},
\end{align*}
$$

where

$$
A_{j}=j^{n}(1+(j-1) \lambda) a_{j}, \text { and } B_{j}=j^{n}\left((1+(j-1) \lambda) b_{j} .\right.
$$

From Definition 1, we have

$$
1+\frac{1}{\gamma}\left[\frac{z F^{\prime}(z)}{G(z)}-1\right] \in h(E)(z \in E)
$$

Let

$$
p(z)=\frac{1}{\gamma}\left[\frac{z F^{\prime}(z)}{G(z)}-1\right] \in h(E) .
$$

This implies that

$$
z F^{\prime}(z)=[1+\gamma(p(z)-1)] G(z) .
$$

After some simplification, we get

$$
j A_{j}=B_{j}+\gamma \sum_{k=1}^{j-1} p_{k} B_{j-k}
$$

$$
j\left|A_{j}\right| \leq\left|B_{j}\right|+|\gamma| \sum_{k=1}^{j-1}\left|p_{k}\right|\left|B_{j-k}\right| .
$$

Therefore by using Lemma 1 together with Lemma 2, we have

$$
\left|A_{j}\right| \leq \frac{\prod_{k=0}^{j-2}\left(k+\left|h^{\prime}(0)\right|\right)}{j(j-1)!}+\frac{|\gamma|\left|h^{\prime}(0)\right|}{j} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2}\left(k+\left|h^{\prime}(0)\right|\right)}{(j-k-1)!} .
$$

Hence,

$$
\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2}\left(k+\left|h^{\prime}(0)\right|\right)}{j^{n}(1+(j-1) \lambda) j!}+\frac{|\gamma|\left|h^{\prime}(0)\right|}{j^{n+1}(1+(j-1) \lambda)} \sum_{k=1}^{j-1} \frac{\left(k+\left|h^{\prime}(0)\right|\right)}{(j-k-1)!} .
$$

This completes the proof of Theorem 1.
We can state the following corollaries:
Corollary 1. Let $h(z)=\frac{1+A z}{1+B z}$ and $f \in \mathcal{A}$ be given by (1). If $f \in \mathcal{K} Q_{<}(n, \lambda, \gamma)$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2}(k+(A-B))}{j!j^{n}(1+(j-1) \lambda) j!}+\frac{|\gamma||A-B|}{j^{n+1}(1+(j-1) \lambda)} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2}(k+(A-B))}{(j-k-1)!} . \tag{7}
\end{equation*}
$$

The above corollary with $n=0$ is proved recently in [24].
Corollary 2. Let $h(z)=\frac{1+z}{1-z}$ and $f \in \mathcal{A}$ be given by (1). If $f \in \mathcal{K} Q_{\langle }(n, \lambda, \gamma)$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{1}{j^{n}(1+(j-1) \lambda)}+\frac{|\gamma|(j-1)}{j^{n}(1+(j-1) \lambda)} . \tag{8}
\end{equation*}
$$

For $\gamma=1, n=0$ in (8), we obtain the well known coefficient estimates of close-to-convex (with $\lambda=0$) and quasi convex (with $\lambda=1$) mappings respectively.

4. Coefficient Estimates of the Class $T_{h}(n, \lambda, \gamma ; \mu)$

The theorem below is our main coefficient estimates for functions in the class $T_{h}(n, \lambda, \gamma ; \mu)$.
Theorem 2. Let $f \in T_{h}(n, \lambda, \gamma ; \mu)$ and be defined by (1). Then for $n \in N^{*}=\{2,3,4, \ldots\}$

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(1+\mu)(2+\mu)}{(n+1+\mu)(n+\mu)}\left[\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2}\left(k+\left|h^{\prime}(0)\right|\right)}{j^{n}(1+(j-1) \lambda) j!}+\frac{|\gamma|\left|h^{\prime}(0)\right|}{j^{n+1}(1+(j-1) \lambda)} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2}\left(k+h^{\prime}(0)\right)}{(j-k-1)!}\right] . \tag{9}
\end{equation*}
$$

Proof. Since $f \in T_{h}(n, \lambda, \gamma ; \mu)$, then there exist $h(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{K} Q_{\langle }(n, \lambda, \gamma)$, such that (3) holds true. Thus it follows that

$$
a_{n}=\frac{(1+\mu)(2+\mu)}{(n+1+\mu)(n+\mu)} b_{n}, \quad n \in N^{*}, \mu \in \mathbb{R}-(-\infty,-1]
$$

Hence, by using Theorem 1, we immediately obtain the desired inequality (9).

References

[1] H. S. Al-Amiri and T. S Fernando, On close-to-convex functions of complex order, Internat. J. Math. and Math. Sci. 13(1990), 321-330.
[2] O. Altintas, Ö. Özkan and H. M. Srivastava, Neighbourhoods of a classof analytic functions with negative coefficients, Appl. Math. Lett. 13 (3) (1995), 63-67.
[3] O. Altintas, Ö. Özka and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (2001), 207-218.
[4] O. Altintas, Ö. Özkan and H. M. Srivastava, Neighbourhoods of a certain family of multivalent functions with negative coefficient, Comput. Math. Appl. 47(2004), 1667-1672.
[5] O. Altintas, H. Irmak, S. Owa and H. M. Srivastava, Coefficient bounds for some familiesof starlike and convex functions of complex order, Appl. Math. Lett. 20(2007), 1218-1222.
[6] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(2013),1165-1171.
[7] A. W. Goodman, Univalent Functions, Vol. I, Polygonal Publishing House, Washington, New Jersey, 1983.
[8] J. M. Jahangiri, Y. C. Kim and H. M. Srivastava, Construction of acertain class of harmonic close-to-convex functions associated with theAlexander integral transform, Integral Transforms Spec. Funct. 14(2003), 237-242.
[9] O. S. Kown and S. Owa, .On quasi convex functions of complex order, Soochow J. Math. 20 (1994), 241-250.
[10] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. Sect. A 12(1983), 153-159.
[11] K. I. Noor, Quasi-convex functions of complex order, PanAmer. Math. J. 3(2)(1993), 81-90.
[12] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-to-convexity,starlikeness, and convexity of certain analytic functions, Appl. Math. Lett.15(1)(2002), 63-69.
[13] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 1) 48 (1943), 48-82.
[14] G. S Sãlãgean, Subclass of univalent functions, in: Complex Analysis: Fifth Romanian-Finisg Seminar, Part 1 (Bucharest, 1981), in: Lecture Notes in Mathematics, vol. 1013, Springer-Verlag, Berlin, Heidelberg and New York, 1983, pp. 362-372.
[15] H. M. Srivastava, Subordinations for multivalent analytic functions associated with the Dzoik-Srivastava operator, Integral Transforms Spec. Funct. 20(2009), 581-606.
[16] H. M. Srivastava and S. Owa, Certain classes of analytic functions with varying arguments, J. Math. Appl. 136(1988), 217-228.
[17] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[18] H. M. Srivastava, O. Altıntaş and S. K. Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24(2011), 1359-1363.
[19] H. M. Srivastava, S.-H. Li and H. Tang, Certain classes of k-uniformlyclose-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl. 1 (3) (2009), 49-63(electronic).
[20] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44(2001), 145-163.
[21] H. M. Srivastava, D. Raducanu and G. S. Salagean, A new class of generalized close-to-starlike functions defined by the Srivastava-Attiya operator, Acta Math. Sinica (English Ser.) 29 (2013), 833-840.
[22] H. M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett. 23(2010), 763-768.
[23] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(2013), 831-842.
[24] W. Ul-Haq, A. Nazneen and N.Rehman, Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat, in press.
[25] W. Ul-Haq, A. Nazneen, M. Arif and N.Rehman, Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comp. Anal. Appl, 16(1)(2014), 133-138.
[26] Q.-H. Xu, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24 (2011), 396-401.
[27] Q.-H. Xu, C.-B. Lv, N.-C. Lou and H. M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Filomat 27(2013), 1351-1356.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45, 30C50
 Keywords. Analytic functions, starlike functions, close-to-convex functions of complex order, Sãlãgean derivatives.
 Received: 23 December 2013; Accepted: 23 May 2014
 Communicated by Hari M. Srivastava
 W. Ul-Haq wishes to acknowledge Deanship of Scientific Research (DSR) Majmaah University for financial and technical support. Email addresses: wasim474@hotmail.com (Wasim Ul-Haq), shabana.manzar@yahoo.com (Shabana Manzar)

